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Abstract. A systematic description of the observed phase transitions in bromoform (CHBr3) 
is given. From the symmetry and structures of the 2, j, 7 phases, the primary order 
parameters for the transitions are selected. By using induced representations and projection 
operator techniques, detailed microscopic distortions consistent with the symmetry and 
structural changes are obtained. To describe the transitions it is necessary to couple 
representations. Secondary order parameters for the transitions are discussed. Invariant 
free energy forms containing the primary and secondary order parameters are presented. 
Using numerical methods, the free energy is minimised and a phase diagram is obtained. 
Thus both microscopic modes and macroscopic thermodynamics are obtained for the 
bromoform structural transitions. 

1. Introduction 

Bromoform, CHBr,, is a representative of a series of fairly simple molecular crystals 
which are methane derivatives. It is one of the solid haloforms, which are made up 
of molecular units of the type CHX, where X = F, C1, Br or I. These rigid molecules 
possess a permanent dipole moment. Methane, from which the haloforms are derived, 
is known to have disordered (plastic) phases and one expects disordered soiid phases 
along with reorientation phases in the haloforms as well. The series of haloform 
solids has been studied by x-ray and neutron diffraction (Fourme and Renaud 1966, 
Kawaguchi et a1 1972, Myers et a1 1983, Iwata and Watenabe 1974), Raman and 
infrared spectroscopy (Anderson et a1 1985, Burgos et a1 1981, Sidorov et a1 1982), 
dielectric measurements (Sharma et a1 1979), calorimetric measurements (Valentine et 
a1 1962, Sharma et al 1979, Burgos et a1 1981, Boerio-Goates and Woodfield 1988) 
and nuclear magnetic resonance (Gallier et a1 1985). 

Bromoform has been the haloform most studied in recent years. Raman and 
infrared experiments (Burgos et a1 1981) as well as x-ray (Kawaguchi et a1 1972) and 
neutron diffraction studies (Myers et a1 1983) have clearly determined three crystalline 
phases of bromoform: a, B and y. The high-temperature cz phase is dynamically 
disordered with two molecules per unit cell and has an average space group symmetry 
of P6Jm (C&). The dipolar alignment of the molecules along the c axis is disordered 
with each dipole moment (C, axis) pointing either parallel or antiparallel to the axis. 
The a phase is stable from the melting temperature down to approximately -5°C 
(Burgos et a1 1981). The p phase has space group symmetry P i  (C!) and is stable from 
-5°C down to the lowest temperature at which bromoform has been studied. The y 
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phase has symmetry P3 (C:J and is a metastable phase formed by rapid cooling of 
liquid CHBr, to liquid nitrogen temperature. The y phase transforms irreversibly to 
the stable p phase by annealing at temperatures above -80°C. 

In this paper we give a systematic description of the transitions in bromoform 
using group theoretical methods. We introduce the formal order parameters for the 
transitions, specifying appropriate Brillouin zone points and the selected irreducible 
representations. We determine the order parameters by referring to detailed microscopic 
‘distortions’ and macroscopic strains observed in the transitions and by using induced 
representations and projection operator techniques. We also obtain the secondary order 
parameters corresponding to each transition. We give the form of the free energy for 
the primary order parameters with their coupled invariants. Using numerical methods, 
we minimise the free energy and a phase diagram is obtained. Thus the microscopic 
description, along with the macroscopic thermodynamics, is given for the observed 
transitions in bromoform. 

2. a-P transition 

In figure 1 is shown a slice along the (110) plane in bromoform in both the a and 
f i  phases. (See Myers et a1 1983 for atomic positions in both phases.) The large 
circles represent bromine atoms, the medium-sized circles represent carbon atoms, and 
the small circles represent hydrogen atoms. In the figure, we can clearly see carbon- 
bromine layers separated by a distance i c .  The hydrogen atoms protrude into the space 
between these layers. In the disordered a phase, the hydrogen atoms are randomly 
distributed among those spaces between the layers, and, on the average, each layer is 
equivalent to every other layer. The disorder is dynamic. Each molecule jumps between 
two orientations, one with the hydrogen above the plane and one with the hydrogen 
below the plane. 

(01 aphase I b l  P phase 

C 

----- a + b  - a + b  

Figure 1. Crystalline structure of bromoform in ( a )  the z phase and in ( b )  the p phase. The 
large circles represent bromine atoms, the medium-sized circles represent carbon atoms, 
and the small circles represent hydrogen atoms. A slice along the (110) plane of thickness 
a d  is shown. 
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In the transition to the phase, two main changes take place (Myers et a1 1983). 
First of all, the alignment of the bromoform molecules becomes ordered and the 
hydrogen atoms are now found only between certain layers. Bilayers are formed, 
consisting of two carbon-bromine layers with a layer of hydrogen atoms in between. 
Second, the bilayers slip along the U + b direction, producing a shear strain. The unit 
cell of bromoform in the p phase is shown in figure 2. Notice that there is no change 
in content of the primitive cell and no change in origin of the space groups in going to 
the p phase. The two major distortions of the original hexagonal CI phase are clearly 
visible: (1) the dipole moments of the two molecules point in opposite directions, and 
( 2 )  the c axis is tilted in the direction, U + b (the angles, p % CI % 81"). 

p phase 

Figure 2. The unit cell of bromoform in the p phase. The arrow shows the direction of the 
dipole moment of each molecule. 

3. Irreducible representations 

In order to give a complete group-theoretical description of the a-p transition, it is 
necessary to first identify the irreducible representations (irreps) of P63/m responsible 
for driving the transition. These irreps must be associated with the r point (k = 0) 
since the size of the unit cell does not change in the transition. 

Let us first consider the shear strain. The strain components which cause the c axis 
to tilt are and e , 3 .  These transform like the functions, yz  and xz .  Using tables such 
as table 4 in Stokes and Hatch (1988), we find that the irrep which has basis functions 
transforming like y z  and xz  is the two-dimensional irrep, r$ @ rl. This is the irrep 
that produces the observed shear strain in the p phase. (This is actually a physically 
irreducible representation, consisting of the direct sum of two irreps which are complex 
conjugates of each other. We use the irrep labelling of Miller and Love (1967) and 
Cracknell et a1 (1979)). 

The dipole ordering of the bromoform molecules presents a more difficult case. 
The z component of the dipole moment transforms like the function z .  Thus, the 
representation of the point group at the molecular site must have a basis function 
that transforms like z .  In the c( phase, the bromoform molecules occupy the Wyckoff 
2(d) positions (!, i, i) and (i, 5, 2 )  with site symmetry 6 (C3,J. The irrep of 6 which 
has a basis function which transforms like z is A,,. Using an induced representation 
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approach (Hatch et a1 1987) and referring to the tables of Putnam (1985), we find 
that both irreps r: and r; of P6,/m are representations induced by A, at the (d) 
position. (Alternatively, we can also obtain this information from Kovalev (1986), if 
we recognise that his irreps r2  and T~ are Miller and Love's and r;, respectively. 
Table 7 in Stokes and Hatch (1988), gives the correspondences between irrep labelling 
of Kovalev and Miller and Love.) 

We have thus found two possible candidates, l-1 and r;, which can produce dipole 
moments at the bromoform sites in the p phase. They are distinguished by the relative 
direction of the dipole moments at the two bromoform molecules in the unit cell. We 
want the irrep which produces these two dipole moments in opposite directions. Let 
us use a projection operator technique to determine this. Both of these irreps are 
one-dimensional. The matrix representative of the inversion operation is equal to +1 
for rl and equal to -1 for r;. The inversion operation exchanges the two bromoform 
molecules in the unit cell and inverts their dipole moments as well. However, the final 
direction of the dipole moment depends also on the particular representation. The 
dipole moment is inverted if the matrix representative is equal to +1 and is not inverted 
if the representative is equal to -1. (The minus sign of the r; representative cancels 
the effect of the inversion operation.) Since the dipole moments of the two molecules 
are oriented in opposite directions in the p phase, rl is clearly the irrep that produces 
the observed dipole ordering. 

At this point, we have identified the irreps which produce the distortions observed 
in the 0 phase. r: produces the dipole ordering, and r,+ e ri produces the shear 
strain. Since both distortions appear simultaneously at the transition, we consider order 
parameter distortions (components) of the carrier space of the reducible representation 
(r: e rt) e r:. 

4. Landau theory 

The possible symmetries of phases which can be obtained from the order parameter 
contributions are simply all the isotropy subgroups of P6,/m for arbitrary vectors 
transforming according to (r,' e rz) e r:. (An isotropy subgroup of P63/m is the 
largest subgroup which leaves a given g = (ql,q2,q3) unchanged.) From Stokes and 
Hatch (1988), we find that P63/m has one isotropy subgroup for irrep rz @ ri  (i.e. 
no component from r:) and one isotropy subgroup for irrep r: (no component from 
r: 8 I-;). These are P i  ((2;) and P3 (C!J, respectively. Normally, consideration of two 
representations also produce additional isotropy subgroups. For the case, (r,'Wz) er: 
(contributions from both irreps), however, the intersection of subgroups just yields P i  
again. Thus, there are only two isotropy subgroups for (r,' 6B r;) e r:. 

Let us now construct the Landau free energy function. Let q1 and q2 be the 
components of the order parameter associated with the two-dimensional irrep r,+ e ri, 
and let q3 be the component of the order parameter associated with the one-dimensional 
irrep r:. The vector g = (ql, q2,  q3)  spans the three-dimensional representation space 
of (r,' e ri) e r:. When g = 0, we obtain the ct phase, P63/m. Nonzero values of g 
yield the two isotropy subgroups: P3 for g = (0,0,q3) and P i  for g = (q l ,q2 ,q3) .  

The Landau free energy expanded in powers of q l ,  q2,  q3 is given by 

6 
(€J = al(rl: + v i )  + a 2 h :  + v:)*  + % @ I ;  + vi)3 + b l ;  + b v ;  + b3r3 

+ cl(q? + q;)q: f c2q1q3(q;  - 311) + c3q2'/3(q: - 3 r ? ; ) .  (1) 
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The two sixth-degree terms have been added for stability and do not represent all of 
the possible sixth-degree invariant polynomials possible in the free energy. 

To find the possible stable phases of this system, we must minimise this function. 
First, let us introduce a change of variables 

We obtain 

CD = q2(a, sin’ 8 + b,  cos2 e)  + q4(a2 sin4 8 + b, cos4 8 + c, sin’ 8 cos’ 8 + c; sin3 8 cos 8) 

+ $(a, sin6 e + b, cos6 e )  (3) 

where 

The only place that q5 appears is in c;. Thus we can minimise c; independent of the 
rest of the free energy. Since c, and c3 are arbitrary coefficients, the minimum of c; 
will in general occur at some general value of 4. Once ci has been minimised, it can be 
treated like a constant in the free energy. Note that the free-energy form in equation (3) 
is the same as the one treated by Gufan and Larin (1980) except for the addition of 
the c; term. This new term, as we shall see, has a very important effect on the phase 
diagram. 

5. Phase diagram 

We used numerical methods to minimise the function in equation (3). We set a, = a, = 
b, = b, = 1 and c, = c; = -3. The actual choice of numerical values for the coefficients 
do not affect the result much. We must only be sure that the value of c1 is negative and 
large enough in magnitude to produce the desired coupling between q l ,  q2,  1,. Using 
these values, we numerically minimised @ for various values of a, and b, ,  assuming, 
as is usual, that all of the temperature and pressure dependence is contained in those 
two coefficients. We obtained the phase diagram shown in figure 3. The full curves 
indicate first-order phase transitions, and the broken lines indicate second-order phase 
transitions. As usual, the second-order phase transitions can be changed to first-order 
phase transitions by changing the signs of a, and b,. 

The a phase corresponds to the region where the minimum of @ occurs at q = 0. The 
phase corresponds to the region where the minimum of @ occurs at q = ( q , ,  q2,  q 3 )  

with all three components non-zero. These are the two phases we have already 
discussed. 

The y phase corresponds to the region where the minimum of @ occurs at q = 

(O,O,q,). This phase has been observed as a metastable state when bromoform is 
quenched from its liquid state to the temperature of liquid nitrogen. Only q3 is non- 
zero, corresponding to distortions that arise from the irrep rt, namely the ordering of 
dipole moments. The space-group symmetry of the y phase is P?. A slice along the 
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Figure 3. The phase diagram of bromoform. a ] ,  bl 
are coefficients in the Landau free energy expansion. 
The full curve represents a first-order phase transi- 
tion which ends at a critical point (cP). The broken 
curves represent second-order phase transitions. Ar- 
row A shows a possible path for the x-p transition 
observed at -5°C and ambient pressure. Arrow B 
shows a possible path for the 2-b-y transitions tak- 
ing place at 10 kbar and 42 kbar under ambient 
temperature. 

01 
n + b  

Figure 4. Crystalline structure of bromoform in the 
phase. Compare with figure I .  

(170) plane in the y phase is shown in figure 4 (compare with figure 1). As can be seen, 
the dipole moments are ordered but there is no shear strain as in the p phase. 

The p’ phase has the same symmetry as the p phase, i.e., none of the three 
components, q l ,  q2,  q3 are zero. However, there is a discontinuous change in the values 
of y , ,  q z ,  q3 across the phase line separating p and p’. The discontinuity diminishes in 
size as we move toward the critical point (CP) and disappears entirely at the critical 
point. This situation is very much like the critical point which ends the phase line 
between liquid and gas phases. Such a critical point in a solid has been observed in 
cerium (Koskenmaki and Gschneider 1978). 

Since we do not know the temperature and pressure dependence of a l  and b, ,  we 
cannot predict which regions of the phase diagram in figure 3 are physically accessible 
in bromoform. A possible path taken in the observed cr-p transition is shown by arrow 
A in the figure. The prominence of both the dipole ordering and the shear leads us to 
believe that the path chosen is representative of the transition. A path going into the p’ 
phase would show nearly negligible ordering while a path going into the y phase would 
show no shear. But both are sizeable at the transition. Thus we expect a weakly first 
order transition. This seems to be consistent with the observed differential scanning 
calorimetry anomaly (Sharma et a1 1979) and the small irreversibility of the transition 
temperature (Myers et al 1983) . 

Note that there is no phase corresponding to q = (q1,q2,0).  This phase normally 
would have appeared where the p’ phase is shown (Gufan and Larin 1980), but the 
ciq4 sin3 62 cos 0 term prevents it from ever being stable. The linear dependence on 
qcos0 = q3 means that the free energy for q = (q,,q2,0) can always be lowered by 
making q3 slightly non-zero (either positive or negative, depending on the sign of ci). 
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As the p’-a phase line is approached, q I  and q2 go to zero like ( - u ~ ) ” ~ ,  the usual 
dependence expected at a second-order transition, and q3 goes to zero like 
Thus, near the phase line, q3 goes to zero much faster than y1 and q2,  and the 
crystal structure approaches what we would expect for q = (q, ,q2,0).  In the case of 
bromoform, this would be a structure where the shear strain is present without any 
dipole ordering. 

6. Secondary order parameters 

Thus far we have mainly considered the major distortions observed in the phase 
transitions. These are the primary order parameters. There are also many secondary 
order parameters. Consider the 3-fl transition. Any distortion allowed by the P i  
symmetry of the p phase will also appear to some degree at this transition. These are 
called the secondary order parameters. They are not as predominant as the primary 
order parameters. For example, the irrep r; el-: produces non-zero strain components, 
6 ,  I and eI2.  Let q4, q5 be the components of the order parameter associated with 
this irrep. Coupling with r$ e r$ introduces two terms in the Landau free energy 
which are of the form 

The linear dependence of q4, q5 in these terms means that if q l ,  q2 are non-zero (the p 
phase), then the free energy can always be lowered by making q4, q5 slightly non-zero. 
Thus, non-zero ( q 4 , q 5 )  must be present to some extent. Even though these strain 
components are less evident than e13, e23 in the p phase, symmetry requires that they 
be present nonetheless. e l l  - e 2 2  and e 1 2  are secondary order parameters. e I3  and 
are primary order parameters. 

Similarly, r: 0 r: also produces a distortion at the bromoform molecules that 
transforms like x and y .  For example, x and y components of the dipole moment 
will appear in the f l  phase, even though they may be much smaller than the z 
component, which is a primary order parameter. Besides components of the dipole 
moment, molecular displacements transforming like x ,  y ,  z will be present. In each 
case, however, the dipole moment or displacement of one bromoform molecule must 
be opposite in direction to the dipole moment or displacement of the other bromoform 
molecule in the unit cell in order to preserve the point of inversion in Pi. 

r: 0 rz produces distortions at the bromoform molecules that transform like the x 
and y components of an axial vector. These are usually denoted S,, Sy .  In the case of 
bromoform, this distortion may appear as a rotation of the molecule about an axis in 
the xy  plane. Because of the transformation properties of axial vectors, this distortion 
must be the same for both bromoform molecules in the unit cell in order to preserve 
the point of inversion in Pi. 

7. y-P transition 

The phase transition from the y phase to the p phase can also be described by Landau 
theory. (See Myers et al 1983 for atomic positions in the y phase.) The space group 
symmetry of the y phase is P3 (Cii). There is no multiplication of the primitive cell and 
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no space group origin change. The primary distortion that takes place in the transition 
to the p phase is the appearance of the strain components, eI3 and €23. We find from 
table 4 in Stokes and Hatch (1988) that the irrep ri 8 r: has basis functions that 
transform like xz and y z .  This must be the irrep that drives the transition. We find in 
table 1 of Stokes and Hatch (1988) that there is one isotropy subgroup of Pg for this 
irrep. I t  is PI, the p phase. 

The Landau free energy function expanded to fourth degree in the order parameter 
is given by 

where q l ,  q 2  are now components of the order parameter associated with the irrep 
rt 8 r: of P3. (Note that the coefficients a, and the order parameter components v i  
here have a different meaning from the ones in equation (l).) Because of the presence 
of the third-degree terms, the transition from the 7 phase to the /? phase must be first 
order, in agreement with the phase diagram in figure 3. 

Experimentally, an irreversible transition from the y phase to the p phase is observed 
if the metastable y phase is annealed at a temperature above -80°C. 

At ambient temperature a sequence of transitions have been observed under pres- 
sure (Shimizu and Matsumoto 1984, Zhao et al 1986). The ~ - / 3  transition takes place 
at -10 kbar and the p-y takes place at -42 kbar. In this sequence the y phase is 
stable. We have indicated a possible path for this sequence of transitions with arrow B 
of figure 3. 
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